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Abstract

In this paper, we propose a method for analyzing word-word dependencies using deterministic
bottom-up manner using Support Vector machines. We experimented with dependency trees
converted from Penn treebank data, and achieved over 90% accuracy of word-word dependency.
Though the result is little worse than the most up-to-date phrase structure based parsers, it looks
satisfactorily accurate considering that our parser uses no information from phrase structures.

1 Introduction

A number of statistical parsers have been proposed and attained a very good performance
[3, 10, 7]. While most of well known work uses learning on Penn treebank [8] syntactic anno-
tated text for the training data, comparable performance is hardly obtainable when they are
applied to texts in quite different expert domains such as medical or legal documents. To build
statistical parsers with high accuracy in various domains, we have to prepare parsed annotated
training data for each of the target domains. To annotate of Penn treebank style phrase struc-
tures (Figure 1 (a)) to sentences, annotators need to be well acquainted with deep linguistic
theories and phrase structure rules. It is unrealistic and almost impossible to train experts in
a specialized scientific domain so as to do Penn-style phrase structure annotation to the texts
of their expertise.

Word-word dependency structure (Figure 1 (b)) is far easier to understand and is more
amenable to annotators who have good knowledge of the target domain but lack deep linguistic
knowledge. Besides, since annotating simpler structure is useful for reaching a consensus among
annotators, it is expected that construction of training data will become more noise-free. In
this paper, we focus on dependency structure analysis hoping for the possibility of preparing
sufficient training data with less noise.

While statistical parsers of phrase structure trees have been intensively studied as mentioned
above, little has paid attention to statistical dependency analysis of English sentences. Eisner’s
probabilistic models [5] propose methods of dependency parsing, but the accuracies are not
satisfactorily high. We propose a new method for statistical dependency parsing of English
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Figure 1: Phrase structure tree and dependency tree: (a) is the phrase structure tree
of the sentence “Rolls-Royce Motor Cars Inc. said it expects its U.S. sales to remain
steady at about 1,200 cars.”, (b) is the dependency tree corresponding to (a).

sentences in a deterministic bottom-up manner. For the learning algorithm we apply Support
Vector Machines (SVMs) relying on their ability to cope with large scale feature spaces.

The rest of this paper is organized as follows. In the next section, we describe an overview
of SVMs and their advantage for dependency analysis. Section 3 shows our deterministic
parsing algorithm and its three parsing actions. In the section 4, we describe a method to
learn dependency structures using SVMs. Section 5 reports on the experiments based on Penn
treebank, and section 6 discusses related work. The final section 7 gives conclusion.

2 Support Vector Machines

Support Vector Machines(SVMs) are one of the binary classifiers based on maximum margin
strategy introduced by Vapnik [11]. Suppose we are given l training examples (xi, yi), (1 ≤ i ≤
l), where xi is a feature vector in n dimensional feature space, yi is the class label {-1, +1}
(positive or negative) of xi. SVMs find a hyperplane w · x + b = 0 which correctly separates
training examples and has maximum margin which is the distance between two hyperplanes
w · x + b ≥ 1 and w · x + b ≤ −1 in Figure 2.
The optimal hyperplane with maximum margin can be obtained by solving the following
quadratic programming.

min
1
2
||w||+ C

l∑

i

ξi

s.t. yi(w · xi + b) ≥ 1− ξi

ξi ≥ 0 (1)

where C is the constant (in our experiment, we fixed C = 1), ξi is called a slack variable for a
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Figure 2: Overview of Support Vector Machine

non-separable case (see [11, 12] for the details). Finally, the optimal hyperplane is written as
follows.

f(x) = sign

(
l∑

i

αiyiK(xi,x) + b

)
(2)

where αi is the Lagrange multiplier corresponding to each constraint, and K(x′,x′′) is called a
kernel function, it calculates similarity between two arguments x′ and x′′. SVMs estimate the
label of an unknown example x whether sign of f(x) is positive or not.

There are two advantages in using SVMs for statistical dependency analysis: (i) High gen-

eralization performance in high dimensional feature spaces. SVMs optimize the pa-
rameter w and b of the separate hyperplane based on maximum margin strategy. This strategy
guarantees theoretically the low generalization error for an unknown example in high dimen-
sional feature space [12]. (ii) Learning with combination of multiple features is possible

by virtue of polynomial kernel functions. SVMs can deal with non-linear classification
using kernel functions. Especially use of the polynomial function (x′ · x′′ + 1)d as the kernel,
such an optimal hyperplane has an effect of taking account of combination of d features without
causing a large amount of computational cost. Owing to these advantages, we can train rules of
dependency structure analysis using many features including not only part-of-speech tags and
word itself, but also their combination.

SVMs are discriminative classifiers, and not generative probabilistic models like naive Bayes
classifiers or maximum entropy models. The absolute value of f(x) in Eq.(2) represents the
distance of example x from the optimal hyperplane, which is not an appropriate score (or
cost) in use of dynamic programing for search of the best answer, though it is widely used in
probabilistic models. Therefore we employ a deterministic parsing algorithm of dependency
structure using SVMs.



3 Deterministic Dependency Analysis

3.1 Three parsing actions

Our parser constructs dependency trees in left-to-right word order of input sentences based on
three parsing actions: Shift, Right and Left. These actions can be applicable to two neighboring
words (referred to as target nodes). Shift means no construction of dependencies between these
target nodes, and the point of focus simply moves to the right. Figure 3 shows an example of a
Shift action. The result of Shift in Figure 3(b) shows that target nodes move to the right, i.e.,
from “saw” and “a” to “a” and “girl”.
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Figure 3: An example of the action Shift: (a) shows states before
the action. (b) is the result after the action

A Right action constructs a dependency relation between two neighboring words where the
left node of target nodes becomes a child of the right one. Figure 4 is an example of the action
Right. After applying this action, “a” becomes a child of “girl” (“a” modifies “girl”). We
should point out that the next target nodes are “saw” and “girl” after executing the action in
our current algorithm, keeping the right frontier focus point unchanged.

I
PRP

saw
VBD

a
DT

girl
NN

with
IN

→

I
PRP

saw
VBD

a
DT

girl
NN

with
IN

(a) (b)

Figure 4: An example of the action Right: (a) shows states before
the action. (b) is the result after the action

The Left action constructs a dependency relation between two neighboring words where the
right node of target nodes becomes a child of the left one, opposite to the action Right. Figure
5 shows an example of the Left action.

Note that when either of Left or Right action is applicable the dependent child, the child
should be a complete subtree to which no further dependent children will exist. For the parser
to guarantee this, we have to make the parser to be able to see the surrounding context of the
target nodes. This will be seen in the next section.

3.2 Parsing Algorithm

Our parsing algorithm consists of two procedure: (i) Estimation of appropriate parsing actions
using contextual information surrounding the target nodes, and (ii) the parser constructs a
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Figure 5: An example of the action Left: (a) shows states before
the action. (b) is the result after the action

dependency tree by executing the estimated actions. Figure 6 shows the pseudo-code of our
parsing algorithm.

Input Sentence: (w1, p1), (w2, p2), · · · , (wn, pn)
Initialize:

i = 1 ;
T = {(w1, p1), (w2, p2), · · · , (wn, pn)}
no construction = true ;

Start:
while |T| ≥ 1 do begin

if i == |T| then
if no construction == true then break;
no construction = true
i = 1 ;

else
x = get contextual features(T, i) ;
y = estimate action(model,x) ;
construction(T, i, y) ;
if y == Left or Right then

no construction = false ;
end;

end;
end;

Figure 6: Parsing Algorithm

During the execution, i and i+1 denote the indexes of the left and right of target nodes in T. T
is the sequence of nodes consisting of m elements tm(m ≤ n), each element of which represents
the root node of a sub-tree constructed in the parsing process (initially all ti are pairs of a word
and a POS tag (wi, pi)).

The estimation of an appropriate parsing action use two functions: get contextual features

and estimate action. The function get contextual features extracts contextual features x

surrounding i, the detail of features is described in section 4.1. The function estimate action

estimates an appropriate parsing action y ∈ {Shift, Right, Left} based on the model. Note
that in the training the model is given by the annotated dependency trees of training sentences,
i.e., the model always answers correct actions. In the analysis of test sentences, the model is
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the learned SVMs.

The role of the variable no construction is to check whether there have been any actions
to construct of dependencies at the end of the sentence. The value being true means that the
model has estimated Shift actions to all the target nodes (from i = 1 to i = |T |) in the parsing
process, then the parser stops the analysis and outputs the subtrees in T, because no further
action is possible. If the no construction is equal to false, the target nodes are moved to the
beginning of the sentence, and the parsing process is repeated until the size of T becomes equal
to 1.

4 Learning Dependency Structure using SVMs

In the training of dependency structure, the training sentence are parsed using our algorithm in
Figure 6. Each estimation of parsing action y in the context x corresponds to an example (x, y)
for SVMs. This is a multi-class classification problem, and we construct three binary classifiers
corresponding to each action Left vs. Right, Left vs. Shift, and Right vs. Shift using pairwise
method. The decision made by pairwise method is the action with the maximum number of
votes among these three SVMs.

4.1 Features used for learning

Let i and i + 1 be the indexes of the left and right of target nodes in T. The left context is
defined as the nodes on the left side of the target nodes: tl, (l < i), and the right context is
defined as those on the right: tr(i + 1 < r). Context lengths (l, r) represents the numbers of
nodes within the left and right contexts. Figure 7 shows an example of context lengths (2, 2).
(In this case, the left context are “–” and “sellers”, and the right context are “who” and “–”).
We use POS tags and words themselves as the candidate features for the nodes within left and
right context.

A feature can be represented as triplet (p, k, v), in which p is the position from the target
nodes, k denotes the feature type, and v is the value of the feature. If p < 0, it represents
the node in the left context, p = 0−, 0+ denotes the left or right node of target nodes. p > 0



denotes those in the right context. The feature type k and its value v are summarized in Table
1. In Table 1, ch-L-pos, ch-L-lex, ch-R-pos and ch-R-lex are information of child nodes within
the context, and are called as child features. In the analysis of prepositions, auxiliary verbs,
or relative pronouns, the information about their children would be a good preference whether
dependencies are constructed or not. In Figure 7, “were”, is one of the child features of “who”,
predicates that “who” modifies to plural noun “sellers”, not modifies singular noun “resort”.
Child features are dynamically determined in the step of analysis.

Table 1: Summary of the feature types and their values.
type value
pos part of speech(POS) tag string
lex word string
ch-L-pos POS tag string of the child node modifying to the parent node from left side
ch-L-lex word string of the child node node modifying to the parent node from left side
ch-R-pos POS tag string of the child node modifying to the parent node from right side
ch-R-lex word string of the child node modifying to the parent node from right side

For example, in Figure 7, the features are as follows: (-2, pos, :), (-2, lex, –), (-1, pos, NNS),
(-1, lex, sellers), (-1, ch-R-pos, DT), (-1, ch-R-lex, the), (0-, pos, IN), (0-, lex, IN), (0+, pos,
NN), (0+, lex, resort), (0+, ch-R-pos, JJ), (0+, ch-R-lex, last), (+1, pos, WP),( +1, lex, who),
(+1, ch-L-pos, VBD), (+1, ch-L-lex, were), (+2, pos, :), (+2, lex, –).

4.2 Grouping training example for reducing learning cost

The computational cost for training SVMs is roughly proportional to l2 or l3 (l is the number
of training examples). When we use a large amount of training sentences like Penn treebank
standard set (section 02 - 21), the the number of training examples becomes more than 1.5
million. It is difficult to learn with all of training examples at once. To cope with this problem,
we divided training examples into some groups. At the current implementation, we divide
provisionally the training examples according to the POS tag at the left target node. Let
SVMsPOS be a set of pairwise SVMs learning from training examples including the feature (0-,
pos, POS). In the analysis of test sentences, the estimation of each parsing action is performed
using the SVMs corresponding to the POS tag of the left target node. For example, if the POS
tag of the left target node is “NN” in analysis of test sentences, our parser estimates the actions
by using SVMsNN .

5 Experiments

In the experiments, we use the standard data set of Penn treebank, that is section 02 to 21 as
the training data, and section 23 as the test data. We convert phrase structure trees of Penn
treebank into dependency structure trees using the head rules similar to Collins’ ones [7]. As
for part of speech tagging of the training data, we use the annotated tags intact. Test sentences
are POS tagged by Nakagawa’s tagger based on revision learning with SVMs (tagging accuracy
is 97.1% for the test data in our experiments) [9]. 2,416 sentences in section 23 of the test set
include 56,684 words, the number of words without punctuation marks is 49,892. Performance



of our parser are evaluated by following three types of measure. Dependency Accuracy, Root
Accuracy and Complete Rate applied to 49,892 words excluding punctuation marks.

Dependency Accuracy (Dep. Acc.) = the number of correct parents
the total number of parents

Root Accuracy (Root Acc.) = the number of correct root nodes
the total number of sentences

Complete Rate (Comp. Rate) = the number of complete parsed sentences
the total number of sentences

5.1 Results

Firstly we investigate the performance and degrees of polynomial kernel functions. Table 2
illustrates the dependency accuracy for the different number of degrees of polynomial kernel
functions. The best result is obtained at d = 2. However, all of the results in d ≥ 2 are
superior to that of d = 1. The results suggest that in the learning of dependency structure
it requires to take account of combination of multiple features, not solely with single features.
The accuracy of d = 3 and d = 4 are lower than d = 2. It may be overfitting by the well known
“curse of dimensionality”, since the number of dimension of feature spaces taking account of
the combination of more than three features is much larger than in d = 2.

Table 2: Dependency accuracies and degrees of polynomial kernel functions:
Context length is (2,2). Use of all features described in Table 1.

d : (x′ · x′′ + 1)d

1 2 3 4
Dep. Acc. 0.854 0.900 0.897 0.886
Root Acc. 0.811 0.896 0.894 0.875

Comp. Rate 0.261 0.379 0.368 0.346

We investigate the performance and the different length of context. Table 3 illustrates the
results of each length of context. The best of dependency accuracy and root accuracy is at the
model (2, 4), and (3, 3) is the best result of complete rate. This demonstrates that the depen-
dency accuracy depends on the context length, and the longer the right context contributes the
performance. The result of (2,5) was worse than that of (2,4). One reason behind this lies that
features which are not effective for parsing are included in the context (2,5).

Table 3: Dependency accuracies and the length of context: Kernel function is (x′ ·
x′′ + 1)2. Use of all features described in Table 1.

(l, r): context length
(2, 2) (2, 3) (2, 4) (2, 5) (3, 2) (3, 3) (3, 4) (3,5)

Dep. Acc. 0.900 0.903 0.903 0.901 0.898 0.902 0.900 0.897
Root Acc. 0.896 0.911 0.916 0.913 0.897 0.915 0.912 0.909

Comp. Rate 0.379 0.382 0.384 0.375 0.373 0.387 0.373 0.366

Next, we investigate which features contribute the dependency accuracy, especially focusing



on the child features. We examine the following five sets of features:

(a) No use of child features (only pos and lex in Table 1)
(b) Use of only lexical features of child nodes (pos, lex, ch-L-lex and ch-R-lex in Table 1)
(c) Use of only part of speech(POS) tag features of child node (pos, lex, ch-L-pos and

ch-R-pos in Table 1)
(d) If POS tag of the parent node is IN, MD, TO, WP or WP$, and the POS tag of the

child is NN, NNS, NNP, NNPS, VB, VBD,VBG, VBN, VBP, VBZ, IN, or MD, then
using of POS tag and lexical feature of child nodes, otherwise only POS tag features of
child.

(e) Use of both POS tag and lexical features of child nodes (All of features in Table 1)

Table 4: Dependency accuracies and five sets of features: (Context
length is (2,4). Kernel function is (x′ · x′′ + 1)2.)

(a) (b) (c) (d) (e)
Dep. Acc. 0.890 0.901 0.902 0.902 0.903
Root Acc. 0.882 0.915 0.912 0.913 0.916

Comp. Rate 0.348 0.383 0.374 0.377 0.384
num. of features 290,008 441,842 290,362 323,262 442,196

Table 4 shows the results of each feature set. The accuracy of (a) is lower than all others. The
result shows that dynamic use of dependencies estimated by SVMs is effective for the following
parsing process even in deterministic manner. The best result is (e) and comparable to the
result of (b). The accuracy of (e) and (b) are superior to (c) and (d) even though feature set (e)
and (b) include all of the lexical information appeared in the training examples and are much
more higher dimensional feature space than both feature set (c) and (d). The results suggest
that the lexical information is more effective features for dependency analysis.

5.2 Comparison with Related Work

We compare our parser with other statistical parsers: maximum entropy inspired parser (MEIP)
proposed by Charniak [3], and probabilistic generative model proposed by Collins [7]. These
parsers produce phrase structure of sentences, thus the output in phrase structure for section
23 are converted into dependency trees using the same head rules of our parser 1. The input
sentences for the Collins parser are assigned part of speech by using the Nakagawa’s tagger for
comparison. We didn’t use the Nakagawa’s tagger for input sentences of MEIP because MEIP
can assigned the part of speech to each word of input sentences by itself.

Our parse is trained with the best setting: Kernel function is (x′ ·x′′+ 1)2, Context length =
(2,4), feature set is (e) in table 4. Table 5 shows the result of the comparison.

While the best result is MEIP, Collins’ models are almost comparable. As the result of our
parser is lower than these two parsers, it is natural that ours does not use any information of
phrase structure and solely rely on word level dependency relation. In the analysis of near to
leaf of dependency trees, the features used by our parser are similar to the phrase structure
parsers’ one, there is no disadvantage of our parser. For example, in the analysis of dependencies

1When we tested MEIP, two part of speech tags “AUX” and “AUXG” (auxiliary verb categories ) are added
to our head rules. Also the head rule of verb phrase was modified. Because these tags are not included in the
tag set of Penn treebank, but occurred in the outputs of MEIP.



Table 5: Comparison with related work.
Charniak Collins Our parser

model 1 model 2 model 3
Dep. Acc. 0.921 0.912 0.915 0.915 0.903
Root Acc. 0.952 0.950 0.951 0.952 0.916

Comp. Rate 0.452 0.406 0.431 0.433 0.384
Leaf Acc. 0.943 0.936 0.936 0.937 0.935

corresponding to base noun phrase, the dependency tree would be able to predicate that the
subtree is a part of the noun phrase according to the parent nodes and each part of speech
tag. In fact, Leaf Acc. of our parser, which denotes the dependency accuracy of leaf nodes, is
comparable to Collins’ in Table 5. 2

In the analysis nearby root of the dependency trees, the phrase structure parsers can use
richer information than our parser. Our parser estimates dependency relation between the
top nodes of subtrees which corresponds to the clause of sentence, or verb phrase including
the head of the sentence. The structure of these subtrees is similar to each other, i.e., the
parent node is verb and the children consist of nouns, prepositions, or adverbs. Therefore it
is difficult to estimate to be a parent node correctly. Phrase structure parsers can use not
only the head information of the phrase, but also the label of phrase like VP, or SBAR. These
labels of phrases are good predictors for estimating dependencies relation. Thus root accuracy
of MEIP and Collins’ parser in Table 5 are much higher than our parser’s one. However, in our
parser accuracy over 90% looks a very good result in estimating dependency relations without
information about the label of phrases.

6 Related Work

Link grammar [2] analyzes both word-word dependencies (call as links) and their relation (called
as connector) represented as the subject of the sentence or the object of the verb. Our parser can
analyze only the word-word dependencies, however, it is possible to incorporate the connector
into our parser by adding the label of connector to the actions Left and Right like “Right-Subject”
or “Left-Object”.

Eisner [5, 4] propose methods of dependency parsing based on probabilistic model, and reported
on the experiments through on Penn treebank. The best result on his experiments achieved
90.0% dependency accuracy. However, it is impossible to compare the results with our results
directly. Because the size of training and test data are different from the use of our experiments.
Also he didn’t evaluate the sentences that contained conjunction. He compared his parser with
Collins parser [6] that was older version than in our experiments. The result of Collins parser
was 92.6% dependency accuracy on the data set of Eisners experiments. Our parser was tested
on various sentences that contained conjunction, and achieved 90.3% accuracy. Therefore the
performance of our parser would be better than Eisner’s one.

2The denominator of Leaf Acc. is the number of leaf nodes annotated by human, and its numerator is the
number of the leaves estimated their parents correctly by the parser.



7 Conclusion

In this paper, we focus on dependency structure analysis hoping for the possibility of preparing
sufficient training data with less noise in various domains, and proposed a method for determin-
istic dependency analysis using Support Vector Machines. We experimented with dependency
trees converted from Penn treebank data, and achieved over 90% accuracy. Though the result
is little worse than the most up-to-date phrase structure based parsers, it looks satisfactorily
accurate considering that our parser uses no information from phrase structures.

Future work includes : (1)Improvement the accuracy. At the current implementation,
our parser does not discriminate the two kinds of structure on dependency tree: (i) there
is no dependencies relation between target nodes, (ii) there is dependency relation between
target nodes, but the node that becomes a child has not been a complete subtree yet. Our
parser executes the same action Shift for these two kinds of structure. In order to cope with
this problem, we need to divide the action Shift into two kinds of actions, Shift’ and Wait
corresponding to (i) and (ii) respectively. These new actions are the same behavior in parsing
process (i.e., the target nodes move to the right), but learned as different class by SVMs.
(2)Application to various domains. In order to evaluate the effectiveness of dependency
structure, it is necessary to apply our parser to quite different domains. We will apply our
parser to biological and medical abstracts in MedLine[1].
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